Relational differential prediction
A typical classification problem involves building a model to correctly segregate instances of two or more classes. Such a model exhibits differential prediction with respect to given data subsets when its performance is significantly different over these subsets. Driven by a mammography application, we aim at learning rules that predict breast cancer stage while maximizing differential prediction over age-stratified data. In this work, we present the first multi-relational differential prediction (aka uplift modeling) system, and propose three different approaches to learn differential predictive rules within the Inductive Logic Programming framework. We first test and validate our methods on synthetic data, then apply them on a mammography dataset for breast cancer stage differential prediction rule discovery. We mine a novel rule linking calcification to in situ breast cancer in older women. © 2012 Springer-Verlag.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences