Skip to main content

An integrated approach to learning Bayesian networks of rules

Publication ,  Conference
Davis, J; Burnside, E; De Castro Dutra, I; Page, D; Santos Costa, V
Published in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
December 1, 2005

Inductive Logic Programming (ILP) is a popular approach for learning rules for classification tasks. An important question is how to combine the individual rules to obtain a useful classifier. In some instances, converting each learned rule into a binary feature for a Bayes net learner improves the accuracy compared to the standard decision list approach [3,4,14]. This results in a two-step process, where rules are generated in the first phase, and the classifier is learned in the second phase. We propose an algorithm that interleaves the two steps, by incrementally building a Bayes net during rule learning. Each candidate rule is introduced into the network, and scored by whether it improves the performance of the classifier. We call the algorithm SAYU for Score As You Use. We evaluate two structure learning algorithms Naïve Bayes and Tree Augmented Naïve Bayes. We test SAYU on four different datasets and see a significant improvement in two out of the four applications. Furthermore, the theories that SAYU learns tend to consist of far fewer rules than the theories in the two-step approach. © Springer-Verlag Berlin Heidelberg 2005.

Duke Scholars

Published In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

December 1, 2005

Volume

3720 LNAI

Start / End Page

84 / 95

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Davis, J., Burnside, E., De Castro Dutra, I., Page, D., & Santos Costa, V. (2005). An integrated approach to learning Bayesian networks of rules. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 3720 LNAI, pp. 84–95). https://doi.org/10.1007/11564096_13
Davis, J., E. Burnside, I. De Castro Dutra, D. Page, and V. Santos Costa. “An integrated approach to learning Bayesian networks of rules.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3720 LNAI:84–95, 2005. https://doi.org/10.1007/11564096_13.
Davis J, Burnside E, De Castro Dutra I, Page D, Santos Costa V. An integrated approach to learning Bayesian networks of rules. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2005. p. 84–95.
Davis, J., et al. “An integrated approach to learning Bayesian networks of rules.” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3720 LNAI, 2005, pp. 84–95. Scopus, doi:10.1007/11564096_13.
Davis J, Burnside E, De Castro Dutra I, Page D, Santos Costa V. An integrated approach to learning Bayesian networks of rules. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2005. p. 84–95.

Published In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

December 1, 2005

Volume

3720 LNAI

Start / End Page

84 / 95

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences