Design and fabrication of heterogeneous lung nodule phantoms for assessing the accuracy and variability of measured texture radiomics features in CT.
We aimed to design and fabricate synthetic lung nodules with patient-informed internal heterogeneity to assess the variability and accuracy of measured texture features in CT. To that end, 190 lung nodules from a publicly available database of chest CT images (Lung Image Database Consortium) were selected based on size ( > 3 mm ) and malignancy. The texture features of the nodules were used to train a statistical texture synthesis model based on clustered lumpy background. The model parameters were ascertained based on a genetic optimization of a Mahalanobis distance objective function. The resulting texture model defined internal heterogeneity within 24 anthropomorphic lesion models which were subsequently fabricated into physical phantoms using a multimaterial three-dimensional (3-D) printer. The 3-D-printed lesions were imbedded in an anthropomorphic chest phantom and imaged with a clinical scanner using different acquisition parameters including slice thickness, dose level, and reconstruction kernel. The imaged lesions were analyzed in terms of texture features to ascertain the impact of CT imaging on lesion texture quantification. The texture modeling method produced lesion models with low and stable Mahalanobis distance between real and synthetic textures. The virtual lesions were successfully printed into 3-D phantoms. The accuracy and variability of the measured features extracted from the CT images of the phantoms showed notable influence from the imaging acquisition parameters with contrast, energy, and texture entropy exhibiting most sensitivity in terms of accuracy, and contrast, dissimilarity, and texture entropy most variability. Thinner slice thicknesses yielded more accurate and edge reconstruction kernels more stable results. We conclude that printed textured models of lesions can be developed using a method that can target and minimize the mathematical distance between real and synthetic lesions. The synthetic lesions can be used as the basis to investigate how CT imaging conditions might affect radiomics features derived from CT images.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 4003 Biomedical engineering
- 3202 Clinical sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 4003 Biomedical engineering
- 3202 Clinical sciences