Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates.
The effect of zinc oxide nanoparticles (ZnO NPs) and zinc sulfide nanoparticles (ZnS NPs) on the toxicity of sewage sludges in sewage sludge-amended soils was investigated with respect to plant- (Lepidium sativum) and soil- (Folsomia candida) species. The toxicity of porewater obtained from the tested soils towards Vibrio fischeri (Microtox®) was also investigated. Two sewage sludges (SSL1 and SSL2) with different organic matter content were amended with nanoparticles. Depending on the type of biotest and the type of sewage sludge, different effects of ZnO or ZnS NPs on the toxicity of sewage sludge-amended soil were observed. In general, ZnO and ZnS NPs stimulated root growth for SSL1 or reduced the harmful impact of SSL2 on the root growth of L. sativum roots. Greater stimulation or inhibition of root growth was observed for the ZnO than ZnS NPs. The unfavorable effect of ZnO/ZnS NPs on F. candida mortality and reproduction was observed at a concentration of ZnO/ZnS in sewage sludge ≥250 mg/kg. Generally, there were no significant differences between ZnO and ZnS NPs toxicity towards F. candida. Aging for 45 days of sewage sludge-amended soil containing NPs affected ZnO and ZnS NPs toxicity to all tested organisms. In the most cases, the toxicity decreased after 45 days of aging for plant (L. sativum) and invertebrates (F. candida). The toxicity of porewater to V. fischeri from sewage sludge-amended soil contains ZnO NPs did not change, while in the case of ZnS NPs, the toxicity increased after 45 days of aging.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Zinc Oxide
- Zinc Compounds
- Sulfides
- Soil Pollutants
- Soil
- Sewage
- Plants
- Nanoparticles
- Meteorology & Atmospheric Sciences
- Lepidium sativum
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Zinc Oxide
- Zinc Compounds
- Sulfides
- Soil Pollutants
- Soil
- Sewage
- Plants
- Nanoparticles
- Meteorology & Atmospheric Sciences
- Lepidium sativum