
Total p-differentials on schemes over Z/p2
Publication
, Journal Article
Dupuy, T; Katz, E; Rabinoff, J; Zureick-Brown, D
Published in: Journal of Algebra
April 15, 2019
For a scheme X defined over the length 2 p-typical Witt vectors W2(k) of a characteristic p field, we introduce total p-differentials which interpolate between Frobenius-twisted differentials and Buium's p-differentials. They form a sheaf over the reduction X0, and behave as if they were the sheaf of differentials of X over a deeper base below W2(k). This allows us to construct the analogues of Gauss–Manin connections and Kodaira–Spencer classes as in the Katz–Oda formalism. We make connections to Frobenius lifts, Borger–Weiland's biring formalism, and Deligne–Illusie classes.
Duke Scholars
Published In
Journal of Algebra
DOI
EISSN
1090-266X
ISSN
0021-8693
Publication Date
April 15, 2019
Volume
524
Start / End Page
110 / 123
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Dupuy, T., Katz, E., Rabinoff, J., & Zureick-Brown, D. (2019). Total p-differentials on schemes over Z/p2. Journal of Algebra, 524, 110–123. https://doi.org/10.1016/j.jalgebra.2019.01.003
Dupuy, T., E. Katz, J. Rabinoff, and D. Zureick-Brown. “Total p-differentials on schemes over Z/p2.” Journal of Algebra 524 (April 15, 2019): 110–23. https://doi.org/10.1016/j.jalgebra.2019.01.003.
Dupuy T, Katz E, Rabinoff J, Zureick-Brown D. Total p-differentials on schemes over Z/p2. Journal of Algebra. 2019 Apr 15;524:110–23.
Dupuy, T., et al. “Total p-differentials on schemes over Z/p2.” Journal of Algebra, vol. 524, Apr. 2019, pp. 110–23. Scopus, doi:10.1016/j.jalgebra.2019.01.003.
Dupuy T, Katz E, Rabinoff J, Zureick-Brown D. Total p-differentials on schemes over Z/p2. Journal of Algebra. 2019 Apr 15;524:110–123.

Published In
Journal of Algebra
DOI
EISSN
1090-266X
ISSN
0021-8693
Publication Date
April 15, 2019
Volume
524
Start / End Page
110 / 123
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics