Skip to main content
Journal cover image

Total p-differentials on schemes over Z/p2

Publication ,  Journal Article
Dupuy, T; Katz, E; Rabinoff, J; Zureick-Brown, D
Published in: Journal of Algebra
April 15, 2019

For a scheme X defined over the length 2 p-typical Witt vectors W2(k) of a characteristic p field, we introduce total p-differentials which interpolate between Frobenius-twisted differentials and Buium's p-differentials. They form a sheaf over the reduction X0, and behave as if they were the sheaf of differentials of X over a deeper base below W2(k). This allows us to construct the analogues of Gauss–Manin connections and Kodaira–Spencer classes as in the Katz–Oda formalism. We make connections to Frobenius lifts, Borger–Weiland's biring formalism, and Deligne–Illusie classes.

Duke Scholars

Published In

Journal of Algebra

DOI

EISSN

1090-266X

ISSN

0021-8693

Publication Date

April 15, 2019

Volume

524

Start / End Page

110 / 123

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dupuy, T., Katz, E., Rabinoff, J., & Zureick-Brown, D. (2019). Total p-differentials on schemes over Z/p2. Journal of Algebra, 524, 110–123. https://doi.org/10.1016/j.jalgebra.2019.01.003
Dupuy, T., E. Katz, J. Rabinoff, and D. Zureick-Brown. “Total p-differentials on schemes over Z/p2.” Journal of Algebra 524 (April 15, 2019): 110–23. https://doi.org/10.1016/j.jalgebra.2019.01.003.
Dupuy T, Katz E, Rabinoff J, Zureick-Brown D. Total p-differentials on schemes over Z/p2. Journal of Algebra. 2019 Apr 15;524:110–23.
Dupuy, T., et al. “Total p-differentials on schemes over Z/p2.” Journal of Algebra, vol. 524, Apr. 2019, pp. 110–23. Scopus, doi:10.1016/j.jalgebra.2019.01.003.
Dupuy T, Katz E, Rabinoff J, Zureick-Brown D. Total p-differentials on schemes over Z/p2. Journal of Algebra. 2019 Apr 15;524:110–123.
Journal cover image

Published In

Journal of Algebra

DOI

EISSN

1090-266X

ISSN

0021-8693

Publication Date

April 15, 2019

Volume

524

Start / End Page

110 / 123

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics