
Non-Archimedean and tropical theta functions
Publication
, Journal Article
Foster, T; Rabinoff, J; Shokrieh, F; Soto, A
Published in: Mathematische Annalen
December 1, 2018
We define a tropicalization procedure for theta functions on abelian varieties over a non-Archimedean field. We show that the tropicalization of a non-Archimedean theta function is a tropical theta function, and that the tropicalization of a non-Archimedean Riemann theta function is a tropical Riemann theta function, up to scaling and an additive constant. We apply these results to the construction of rational functions with prescribed behavior on the skeleton of a principally polarized abelian variety. We work with the Raynaud–Bosch–Lütkebohmert theory of non-Archimedean theta functions for abelian varieties with semi-abelian reduction.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Mathematische Annalen
DOI
ISSN
0025-5831
Publication Date
December 1, 2018
Volume
372
Issue
3-4
Start / End Page
891 / 914
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Foster, T., Rabinoff, J., Shokrieh, F., & Soto, A. (2018). Non-Archimedean and tropical theta functions. Mathematische Annalen, 372(3–4), 891–914. https://doi.org/10.1007/s00208-018-1646-3
Foster, T., J. Rabinoff, F. Shokrieh, and A. Soto. “Non-Archimedean and tropical theta functions.” Mathematische Annalen 372, no. 3–4 (December 1, 2018): 891–914. https://doi.org/10.1007/s00208-018-1646-3.
Foster T, Rabinoff J, Shokrieh F, Soto A. Non-Archimedean and tropical theta functions. Mathematische Annalen. 2018 Dec 1;372(3–4):891–914.
Foster, T., et al. “Non-Archimedean and tropical theta functions.” Mathematische Annalen, vol. 372, no. 3–4, Dec. 2018, pp. 891–914. Scopus, doi:10.1007/s00208-018-1646-3.
Foster T, Rabinoff J, Shokrieh F, Soto A. Non-Archimedean and tropical theta functions. Mathematische Annalen. 2018 Dec 1;372(3–4):891–914.

Published In
Mathematische Annalen
DOI
ISSN
0025-5831
Publication Date
December 1, 2018
Volume
372
Issue
3-4
Start / End Page
891 / 914
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics