Skip to main content
Journal cover image

Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose.

Publication ,  Journal Article
Zhang, S-L; Chen, X; Wei, C-C; Filep, JG; Tang, S-S; Ingelfinger, JR; Chan, JSD
Published in: Endocrinology
December 2002

The present studies investigated whether insulin inhibits the stimulatory effect of dexamethasone (DEX) on angiotensinogen (ANG) gene expression and induction of hypertrophy in rat immortalized renal proximal tubular cells (IRPTCs) in a high-glucose milieu. Rat IRPTCs were cultured in monolayer. ANG and ANG mRNA expression in IRPTCs were quantified by a specific RIA for rat ANG and by RT-PCR assay, respectively. A fusion gene containing the full length of the 5'-flanking region of the rat ANG gene linked to a chloramphenicol acetyl transferase reporter gene was introduced into IRPTCs. The level of fusion gene expression was determined by cellular chloramphenicol acetyl transferase enzymatic activity. Cellular hypertrophy was assessed by flow cytometry, cellular p27(Kip1) protein expression, and protein assay. Our results showed that high glucose (i.e. 25 mM) and DEX (10(-7) M) additively stimulated ANG gene expression and induced IRPTC hypertrophy. Insulin inhibited the effect of high glucose and DEX on these parameters. The inhibitory effect of insulin was reversed by PD 98059 (a MAPK inhibitor) but not by wortmannin (a phosphatidylinositol-3-kinase inhibitor). These results demonstrate that insulin is effective in blocking the stimulatory action of high glucose and DEX on ANG gene expression and induction of IRPTC hypertrophy, suggesting its important role in preventing local intrarenal renin-angiotensin system activation and renal proximal tubular cell hypertrophy induced by hyperglycemia and glucocorticoids in vivo.

Duke Scholars

Published In

Endocrinology

DOI

ISSN

0013-7227

Publication Date

December 2002

Volume

143

Issue

12

Start / End Page

4627 / 4635

Location

United States

Related Subject Headings

  • Tumor Suppressor Proteins
  • Transfection
  • Reverse Transcriptase Polymerase Chain Reaction
  • Recombinant Fusion Proteins
  • Receptors, Glucocorticoid
  • Rats
  • RNA, Messenger
  • Promoter Regions, Genetic
  • Mifepristone
  • Kidney Tubules, Proximal
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, S.-L., Chen, X., Wei, C.-C., Filep, J. G., Tang, S.-S., Ingelfinger, J. R., & Chan, J. S. D. (2002). Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose. Endocrinology, 143(12), 4627–4635. https://doi.org/10.1210/en.2002-220408
Zhang, Shao-Ling, Xing Chen, Chih-Chang Wei, Janos G. Filep, Shiow-Shih Tang, Julie R. Ingelfinger, and John S. D. Chan. “Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose.Endocrinology 143, no. 12 (December 2002): 4627–35. https://doi.org/10.1210/en.2002-220408.
Zhang S-L, Chen X, Wei C-C, Filep JG, Tang S-S, Ingelfinger JR, et al. Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose. Endocrinology. 2002 Dec;143(12):4627–35.
Zhang, Shao-Ling, et al. “Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose.Endocrinology, vol. 143, no. 12, Dec. 2002, pp. 4627–35. Pubmed, doi:10.1210/en.2002-220408.
Zhang S-L, Chen X, Wei C-C, Filep JG, Tang S-S, Ingelfinger JR, Chan JSD. Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose. Endocrinology. 2002 Dec;143(12):4627–4635.
Journal cover image

Published In

Endocrinology

DOI

ISSN

0013-7227

Publication Date

December 2002

Volume

143

Issue

12

Start / End Page

4627 / 4635

Location

United States

Related Subject Headings

  • Tumor Suppressor Proteins
  • Transfection
  • Reverse Transcriptase Polymerase Chain Reaction
  • Recombinant Fusion Proteins
  • Receptors, Glucocorticoid
  • Rats
  • RNA, Messenger
  • Promoter Regions, Genetic
  • Mifepristone
  • Kidney Tubules, Proximal