Motivations and methods for the analysis of multi-modality X-ray systems for explosives detection
Transmission-based imaging and X-ray diffraction-based material analysis have largely developed independently. However, for a variety of applications ranging from in-vivo soft tissue analysis to concealed explosives detection, it is necessary to realize high-fidelity, spatially-resolved material discrimination. We therefore seek to understand to what degree transmission and X-ray diffraction (XRD) complement one another and can be implemented practically, particularly in the case of explosives detection in aviation security. Using a combination of simulated and experimental data, we identify the relative value of the X-ray signatures available to transmission and XRD measurements, and explore how the measurement fidelity can impact these results.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering