Fractional monodromy in the 1 : - 2 resonance
Publication
, Journal Article
Efstathiou, K; Cushman, RH; Sadovskií, DA
Published in: Advances in Mathematics
February 15, 2007
We give an analytic proof of the fractional monodromy theorem for the 1 : - 2 oscillator system with S1 symmetry formulated by N.N. Nekhoroshev, D.A. Sadovskií, and B.I. Zhilinskií in C. R. Acad. Sci. Paris, Ser. I 335 (2002) 985-988. Our proof is based on an analytic description of the Hamiltonian flow on the fibers of the integral map of this system. © 2006 Elsevier Inc. All rights reserved.
Duke Scholars
Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
February 15, 2007
Volume
209
Issue
1
Start / End Page
241 / 273
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Efstathiou, K., Cushman, R. H., & Sadovskií, D. A. (2007). Fractional monodromy in the 1 : - 2 resonance. Advances in Mathematics, 209(1), 241–273. https://doi.org/10.1016/j.aim.2006.05.006
Efstathiou, K., R. H. Cushman, and D. A. Sadovskií. “Fractional monodromy in the 1 : - 2 resonance.” Advances in Mathematics 209, no. 1 (February 15, 2007): 241–73. https://doi.org/10.1016/j.aim.2006.05.006.
Efstathiou K, Cushman RH, Sadovskií DA. Fractional monodromy in the 1 : - 2 resonance. Advances in Mathematics. 2007 Feb 15;209(1):241–73.
Efstathiou, K., et al. “Fractional monodromy in the 1 : - 2 resonance.” Advances in Mathematics, vol. 209, no. 1, Feb. 2007, pp. 241–73. Scopus, doi:10.1016/j.aim.2006.05.006.
Efstathiou K, Cushman RH, Sadovskií DA. Fractional monodromy in the 1 : - 2 resonance. Advances in Mathematics. 2007 Feb 15;209(1):241–273.
Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
February 15, 2007
Volume
209
Issue
1
Start / End Page
241 / 273
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0101 Pure Mathematics