A method for accurate computation of the rotation and the twist numbers of invariant circles
Publication
, Journal Article
Efstathiou, K; Voglis, N
Published in: Physica D Nonlinear Phenomena
January 1, 2001
A method is proposed for accurate evaluation of the rotation and the twist numbers of invariant circles in two degrees of freedom Hamiltonian systems or two-dimensional symplectic maps. The method uses the recurrence of orbits to overcome the problems usually arising because of the multivalued character of the angles (due to modulo 2π) that have to be added in order to evaluate the above numbers. Furthermore, best convergent demoninators Q
Duke Scholars
Published In
Physica D Nonlinear Phenomena
DOI
ISSN
0167-2789
Publication Date
January 1, 2001
Volume
158
Issue
1-4
Start / End Page
151 / 163
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Efstathiou, K., & Voglis, N. (2001). A method for accurate computation of the rotation and the twist numbers of invariant circles. Physica D Nonlinear Phenomena, 158(1–4), 151–163. https://doi.org/10.1016/S0167-2789(01)00299-8
Efstathiou, K., and N. Voglis. “A method for accurate computation of the rotation and the twist numbers of invariant circles.” Physica D Nonlinear Phenomena 158, no. 1–4 (January 1, 2001): 151–63. https://doi.org/10.1016/S0167-2789(01)00299-8.
Efstathiou K, Voglis N. A method for accurate computation of the rotation and the twist numbers of invariant circles. Physica D Nonlinear Phenomena. 2001 Jan 1;158(1–4):151–63.
Efstathiou, K., and N. Voglis. “A method for accurate computation of the rotation and the twist numbers of invariant circles.” Physica D Nonlinear Phenomena, vol. 158, no. 1–4, Jan. 2001, pp. 151–63. Scopus, doi:10.1016/S0167-2789(01)00299-8.
Efstathiou K, Voglis N. A method for accurate computation of the rotation and the twist numbers of invariant circles. Physica D Nonlinear Phenomena. 2001 Jan 1;158(1–4):151–163.
Published In
Physica D Nonlinear Phenomena
DOI
ISSN
0167-2789
Publication Date
January 1, 2001
Volume
158
Issue
1-4
Start / End Page
151 / 163
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics