Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance
Publication
, Journal Article
Efstathiou, K; Hanßmann, H; Marchesiello, A
Published in: Journal of Geometry and Physics
December 1, 2019
We consider integrable Hamiltonian systems in three degrees of freedom near an elliptic equilibrium in 1:1:−2 resonance. The integrability originates from averaging along the periodic motion of the quadratic part and an imposed rotational symmetry about the vertical axis. Introducing a detuning parameter we find a rich bifurcation diagram, containing three parabolas of Hamiltonian Hopf bifurcations that join at the origin. We describe the monodromy of the resulting ramified 3-torus bundle as variation of the detuning parameter lets the system pass through 1:1:−2 resonance.
Duke Scholars
Published In
Journal of Geometry and Physics
DOI
ISSN
0393-0440
Publication Date
December 1, 2019
Volume
146
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
APA
Chicago
ICMJE
MLA
NLM
Efstathiou, K., Hanßmann, H., & Marchesiello, A. (2019). Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance. Journal of Geometry and Physics, 146. https://doi.org/10.1016/j.geomphys.2019.103493
Efstathiou, K., H. Hanßmann, and A. Marchesiello. “Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance.” Journal of Geometry and Physics 146 (December 1, 2019). https://doi.org/10.1016/j.geomphys.2019.103493.
Efstathiou K, Hanßmann H, Marchesiello A. Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance. Journal of Geometry and Physics. 2019 Dec 1;146.
Efstathiou, K., et al. “Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance.” Journal of Geometry and Physics, vol. 146, Dec. 2019. Scopus, doi:10.1016/j.geomphys.2019.103493.
Efstathiou K, Hanßmann H, Marchesiello A. Bifurcations and monodromy of the axially symmetric 1:1:−2 resonance. Journal of Geometry and Physics. 2019 Dec 1;146.
Published In
Journal of Geometry and Physics
DOI
ISSN
0393-0440
Publication Date
December 1, 2019
Volume
146
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences