Skip to main content
Journal cover image

Hamiltonian Monodromy and Morse Theory

Publication ,  Journal Article
Martynchuk, N; Broer, HW; Efstathiou, K
Published in: Communications in Mathematical Physics
April 1, 2020

We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takens’s index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko–Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.

Duke Scholars

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

April 1, 2020

Volume

375

Issue

2

Start / End Page

1373 / 1392

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Martynchuk, N., Broer, H. W., & Efstathiou, K. (2020). Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics, 375(2), 1373–1392. https://doi.org/10.1007/s00220-019-03578-2
Martynchuk, N., H. W. Broer, and K. Efstathiou. “Hamiltonian Monodromy and Morse Theory.” Communications in Mathematical Physics 375, no. 2 (April 1, 2020): 1373–92. https://doi.org/10.1007/s00220-019-03578-2.
Martynchuk N, Broer HW, Efstathiou K. Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics. 2020 Apr 1;375(2):1373–92.
Martynchuk, N., et al. “Hamiltonian Monodromy and Morse Theory.” Communications in Mathematical Physics, vol. 375, no. 2, Apr. 2020, pp. 1373–92. Scopus, doi:10.1007/s00220-019-03578-2.
Martynchuk N, Broer HW, Efstathiou K. Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics. 2020 Apr 1;375(2):1373–1392.
Journal cover image

Published In

Communications in Mathematical Physics

DOI

EISSN

1432-0916

ISSN

0010-3616

Publication Date

April 1, 2020

Volume

375

Issue

2

Start / End Page

1373 / 1392

Related Subject Headings

  • Mathematical Physics
  • 5107 Particle and high energy physics
  • 4904 Pure mathematics
  • 4902 Mathematical physics
  • 0206 Quantum Physics
  • 0105 Mathematical Physics
  • 0101 Pure Mathematics