Hamiltonian Monodromy and Morse Theory
Publication
, Journal Article
Martynchuk, N; Broer, HW; Efstathiou, K
Published in: Communications in Mathematical Physics
April 1, 2020
We show that Hamiltonian monodromy of an integrable two degrees of freedom system with a global circle action can be computed by applying Morse theory to the Hamiltonian of the system. Our proof is based on Takens’s index theorem, which specifies how the energy-h Chern number changes when h passes a non-degenerate critical value, and a choice of admissible cycles in Fomenko–Zieschang theory. Connections of our result to some of the existing approaches to monodromy are discussed.
Duke Scholars
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
April 1, 2020
Volume
375
Issue
2
Start / End Page
1373 / 1392
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Martynchuk, N., Broer, H. W., & Efstathiou, K. (2020). Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics, 375(2), 1373–1392. https://doi.org/10.1007/s00220-019-03578-2
Martynchuk, N., H. W. Broer, and K. Efstathiou. “Hamiltonian Monodromy and Morse Theory.” Communications in Mathematical Physics 375, no. 2 (April 1, 2020): 1373–92. https://doi.org/10.1007/s00220-019-03578-2.
Martynchuk N, Broer HW, Efstathiou K. Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics. 2020 Apr 1;375(2):1373–92.
Martynchuk, N., et al. “Hamiltonian Monodromy and Morse Theory.” Communications in Mathematical Physics, vol. 375, no. 2, Apr. 2020, pp. 1373–92. Scopus, doi:10.1007/s00220-019-03578-2.
Martynchuk N, Broer HW, Efstathiou K. Hamiltonian Monodromy and Morse Theory. Communications in Mathematical Physics. 2020 Apr 1;375(2):1373–1392.
Published In
Communications in Mathematical Physics
DOI
EISSN
1432-0916
ISSN
0010-3616
Publication Date
April 1, 2020
Volume
375
Issue
2
Start / End Page
1373 / 1392
Related Subject Headings
- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics