The Revised Speech Perception in Noise Test (R-SPIN) in a multiple signal-to-noise ratio paradigm.
BACKGROUND: The Revised Speech Perception in Noise Test (R-SPIN; Bilger, 1984b) is composed of 200 target words distributed as the last words in 200 low-predictability (LP) and 200 high-predictability (HP) sentences. Four list pairs, each consisting of two 50-sentence lists, were constructed with the target word in a LP and HP sentence. Traditionally the R-SPIN is presented at a signal-to-noise ratio (SNR, S/N) of 8 dB with the listener task to repeat the last word in the sentence. PURPOSE: The purpose was to determine the practicality of altering the R-SPIN format from a single SNR paradigm into a multiple SNR paradigm from which the 50% points for the HP and LP sentences can be calculated. RESEARCH DESIGN: Three repeated measures experiments were conducted. STUDY SAMPLE: Forty listeners with normal hearing and 184 older listeners with pure-tone hearing loss participated in the sequence of experiments. DATA COLLECTION AND ANALYSIS: The R-SPIN sentences were edited digitally (1) to maintain the temporal relation between the sentences and babble, (2) to establish the SNRs, and (3) to mix the speech and noise signals to obtain SNRs between -1 and 23 dB. All materials were recorded on CD and were presented through an earphone with the responses recorded and analyzed at the token level. For reference purposes the Words-in-Noise Test (WIN) was included in the first experiment. RESULTS: In Experiment 1, recognition performances by listeners with normal hearing were better than performances by listeners with hearing loss. For both groups, performances on the HP materials were better than performances on the LP materials. Performances on the LP materials and on the WIN were similar. Performances at 8 dB S/N were the same with the traditional fixed level presentation and the descending presentation level paradigms. The results from Experiment 2 demonstrated that the four list pairs of R-SPIN materials produced good first approximation psychometric functions over the -4 to 23 dB S/N range, but there were irregularities. The data from Experiment 2 were used in Experiment 3 to guide the selection of the words to be used at the various SNRs that would provide homogeneous performances at each SNR and would produce systematic psychometric functions. In Experiment 3, the 50% points were in good agreement for the LP and HP conditions within both groups of listeners. The psychometric functions for List Pairs 1 and 2, 3 and 4, and 5 and 6 had similar characteristics and maintained reasonable separations between the HP and LP functions, whereas the HP and LP functions for List Pair 7 and 8 bisected one another at the lower SNRs. CONCLUSIONS: This study indicates that the R-SPIN can be configured into a multiple SNR paradigm. A more in-depth study with the R-SPIN materials is needed to develop lists that are systematic and reasonably equivalent for use on listeners with hearing loss. The approach should be based on the psychometric characteristics of the 200 HP and 200 LP sentences with the current R-SPIN lists discarded. Of importance is maintaining the synchrony between the sentences and their accompanying babble.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Young Adult
- Speech Perception
- Speech Discrimination Tests
- Signal-To-Noise Ratio
- Psychometrics
- Psychoacoustics
- Otorhinolaryngology
- Noise
- Middle Aged
- Humans
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Young Adult
- Speech Perception
- Speech Discrimination Tests
- Signal-To-Noise Ratio
- Psychometrics
- Psychoacoustics
- Otorhinolaryngology
- Noise
- Middle Aged
- Humans