Steady states and dynamics of a thin-film-type equation with non-conserved mass
Publication
, Journal Article
Ji, H; Witelski, T
Published in: European Journal of Applied Mathematics
We study the steady states and dynamics of a thin-film-type equation with non-conserved mass in one dimension. The evolution equation is a non-linear fourth-order degenerate parabolic partial differential equation (PDE) motivated by a model of volatile viscous fluid films allowing for condensation or evaporation. We show that by changing the sign of the non-conserved flux and breaking from a gradient flow structure, the problem can exhibit novel behaviours including having two distinct classes of co-existing steady-state solutions. Detailed analysis of the bifurcation structure for these steady states and their stability reveals several possibilities for the dynamics. For some parameter regimes, solutions can lead to finite-time rupture singularities. Interestingly, we also show that a finite-amplitude limit cycle can occur as a singular perturbation in the nearly conserved limit.
Altmetric Attention Stats
Dimensions Citation Stats