Design under uncertainty and assessment of performance reliability of a dual-use medium truck with hydraulic-hybrid powertrain and fuel cell auxiliary power unit
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability. The most relevant design parameters of the diesel engine, fuel cell, driveline and vehicle are considered. The results demonstrate the necessity for addressing uncertainty to make valid assessments and design decisions. Copyright © 2005 SAE International.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Related Subject Headings
- 4014 Manufacturing engineering
- 4002 Automotive engineering
- 0910 Manufacturing Engineering
- 0902 Automotive Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Related Subject Headings
- 4014 Manufacturing engineering
- 4002 Automotive engineering
- 0910 Manufacturing Engineering
- 0902 Automotive Engineering