Skip to main content

Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface

Publication ,  Journal Article
Gao, Y; Liu, JG
Published in: Interfaces and Free Boundaries
January 1, 2021

We study the dynamics of a droplet moving on an inclined rough surface in the absence of inertial and viscous stress effects. In this case, the dynamics of the droplet is a purely geometric motion in terms of the wetting domain and the capillary surface. Using a single graph representation, we interpret this geometric motion as a gradient flow on a manifold. We propose unconditionally stable first/second order numerical schemes to simulate this geometric motion of the droplet, which is described using motion by mean curvature coupled with moving contact lines. The schemes are based on (i) explicit moving boundaries, which decouple the dynamic updates of the contact lines and the capillary surface, (ii) an arbitrary Lagrangian-Eulerian method on moving grids and (iii) a predictor-corrector method with a nonlinear elliptic solver up to second order accuracy. For the case of quasi-static dynamics with continuous spatial variable in the numerical schemes, we prove the stability and convergence of the first/second order numerical schemes. To demonstrate the accuracy and long-time validation of the proposed schemes, several challenging computational examples - including breathing droplets, droplets on inhomogeneous rough surfaces and quasi-static Kelvin pendant droplets - are constructed and compared with exact solutions to quasi-static dynamics obtained by desingularized differential-algebraic system of equations (DAEs).

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Interfaces and Free Boundaries

DOI

ISSN

1463-9963

Publication Date

January 1, 2021

Volume

23

Issue

1

Start / End Page

103 / 158

Related Subject Headings

  • Applied Mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gao, Y., & Liu, J. G. (2021). Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface. Interfaces and Free Boundaries, 23(1), 103–158. https://doi.org/10.4171/ifb/451
Gao, Y., and J. G. Liu. “Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface.” Interfaces and Free Boundaries 23, no. 1 (January 1, 2021): 103–58. https://doi.org/10.4171/ifb/451.
Gao, Y., and J. G. Liu. “Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface.” Interfaces and Free Boundaries, vol. 23, no. 1, Jan. 2021, pp. 103–58. Scopus, doi:10.4171/ifb/451.

Published In

Interfaces and Free Boundaries

DOI

ISSN

1463-9963

Publication Date

January 1, 2021

Volume

23

Issue

1

Start / End Page

103 / 158

Related Subject Headings

  • Applied Mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics