On the AC0 complexity of subgraph isomorphism
Let P be a fixed graph (hereafter called a \pattern"), and let Subgraph(P) denote the problem of deciding whether a given graph G contains a subgraph isomorphic to P. We are interested in AC0-complexity of this problem, determined by the smallest possible exponent C(P) for which Subgraph(P) possesses bounded-depth circuits of size nC(P)+o(1). Motivated by the previous research in the area, we also consider its \colorful" version Subgraphcol(P) in which the target graph G is V (P)-colored, and the average-case version Subgraphave(P) under the distribution G(n, n-θ(P)), where θ(P) is the threshold exponent of P. Defining C
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computation Theory & Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0101 Pure Mathematics