Skip to main content

A covariance regression model

Publication ,  Journal Article
Hoff, PD; Niu, X
Published in: Statistica Sinica
April 1, 2012

Classical regression analysis relates the expectation of a response variable to a linear combination of explanatory variables. In this article, we propose a covariance regression model that parameterizes the covariance matrix of a multivariate response vector as a parsimonious quadratic function of explanatory variables. The approach is analogous to the mean regression model, and is similar to a factor analysis model in which the factor loadings depend on the explanatory variables. Using a random-effects representation, parameter estimation for the model is straightforward using either an EM-algorithm or an MCMC approximation via Gibbs sampling. The proposed methodology provides a simple but flexible representation of heteroscedasticity across the levels of an explanatory variable, improves estimation of the mean function and gives better calibrated prediction regions when compared to a homoscedastic model.

Duke Scholars

Published In

Statistica Sinica

DOI

ISSN

1017-0405

Publication Date

April 1, 2012

Volume

22

Issue

2

Start / End Page

729 / 753

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 0801 Artificial Intelligence and Image Processing
  • 0199 Other Mathematical Sciences
  • 0104 Statistics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hoff, P. D., & Niu, X. (2012). A covariance regression model. Statistica Sinica, 22(2), 729–753. https://doi.org/10.5705/ss.2010.051
Hoff, P. D., and X. Niu. “A covariance regression model.” Statistica Sinica 22, no. 2 (April 1, 2012): 729–53. https://doi.org/10.5705/ss.2010.051.
Hoff PD, Niu X. A covariance regression model. Statistica Sinica. 2012 Apr 1;22(2):729–53.
Hoff, P. D., and X. Niu. “A covariance regression model.” Statistica Sinica, vol. 22, no. 2, Apr. 2012, pp. 729–53. Scopus, doi:10.5705/ss.2010.051.
Hoff PD, Niu X. A covariance regression model. Statistica Sinica. 2012 Apr 1;22(2):729–753.

Published In

Statistica Sinica

DOI

ISSN

1017-0405

Publication Date

April 1, 2012

Volume

22

Issue

2

Start / End Page

729 / 753

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 0801 Artificial Intelligence and Image Processing
  • 0199 Other Mathematical Sciences
  • 0104 Statistics