A covariance regression model
Classical regression analysis relates the expectation of a response variable to a linear combination of explanatory variables. In this article, we propose a covariance regression model that parameterizes the covariance matrix of a multivariate response vector as a parsimonious quadratic function of explanatory variables. The approach is analogous to the mean regression model, and is similar to a factor analysis model in which the factor loadings depend on the explanatory variables. Using a random-effects representation, parameter estimation for the model is straightforward using either an EM-algorithm or an MCMC approximation via Gibbs sampling. The proposed methodology provides a simple but flexible representation of heteroscedasticity across the levels of an explanatory variable, improves estimation of the mean function and gives better calibrated prediction regions when compared to a homoscedastic model.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0801 Artificial Intelligence and Image Processing
- 0199 Other Mathematical Sciences
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0801 Artificial Intelligence and Image Processing
- 0199 Other Mathematical Sciences
- 0104 Statistics