Model averaging and dimension selection for the singular value decomposition
Many multivariate data-analysis techniques for an m × n matrix Y are related to the model Y = M + E, where Y is an m × n matrix of full rank and M is an unobserved mean matrix of rank K < (m ∧ n). Typically the rank of M is estimated in a heuristic way and then the least-squares estimate of M is obtained via the singular value decomposition of Y, yielding an estimate that can have a very high variance. In this article we suggest a model-based alternative to the preceding approach by providing prior distributions and posterior estimation for the rank of M and the components of its singular value decomposition. In addition to providing more accurate inference, such an approach has the advantage of being extendable to more general data-analysis situations, such as inference in the presence of missing data and estimation in a generalized linear modeling framework. © 2007 American Statistical Association.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics