Hierarchical multilinear models for multiway data
Reduced-rank decompositions provide descriptions of the variation among the elements of a matrix or array. In such decompositions, the elements of an array are expressed as products of low-dimensional latent factors. This article presents a model-based version of such a decomposition, extending the scope of reduced-rank methods to accommodate a variety of data types such as longitudinal social networks and continuous multivariate data that are cross-classified by categorical variables. The proposed model-based approach is hierarchical, in that the latent factors corresponding to a given dimension of the array are not a priori independent, but exchangeable. Such a hierarchical approach allows more flexibility in the types of patterns that can be represented. © 2010 Elsevier B.V. All rights reserved.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0802 Computation Theory and Mathematics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0802 Computation Theory and Mathematics
- 0104 Statistics