Solving partial differential equations on closed surfaces with planar cartesian grids
We present a general purpose method for solving partial differential equations on a closed surface, based on a technique for discretizing the surface introduced by Wenjun Ying and Wei-Cheng Wang [J. Comput. Phys., 252 (2013), pp. 606{624] which uses projections on coordinate planes. Assuming it is given as a level set, the surface is represented by a set of points at which it intersects the intervals between grid points in a three-dimensional grid. They are designated as primary or secondary. Discrete functions on the surface have independent values at primary points, with values at secondary points determined by an equilibration process. Each primary point and its neighbors have projections to regular grid points in a coordinate plane where the equilibration is done and finite differences are computed. The solution of a p.d.e. can be reduced to standard methods on Cartesian grids in the coordinate planes, with the equilibration allowing seamless tran- sition from one system to another. We observe second order accuracy in examples with a variety of equations, including surface diffiusion determined by the Laplace{Beltrami operator and the shallow water equations on a sphere.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics