Skip to main content

Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation

Publication ,  Journal Article
Simonelli, I; Simonelli, L
Published in: Annales Univ. Sci., Budsapest, Sec. Comp.
July 1, 2020

Let $ V_{n} = X_{1,n} + X_{2,n} + \cdots + X_{n,n}$ where the $X_{i,n}$'s are Bernoulli random variables which take the value $1$ with probability $b(i;n)$. Let $\lambda_{n} = \sum\limits_{i=1}^{n} b(i;n) $, $\lambda = \lim\limits_{n \to \infty} \lambda_n,$ and $m_n = \max\limits_{1 \leq i \leq n} b(i;n)$. We derive asymptotic results for $P(V_{n}=k)$ that hold without assuming that $\lambda < +\infty$ or $m_n \to 0$. Also, we do not assume $k$ to be fixed, but instead, our results hold uniformly for all $k$ which satisfy particular growth conditions with respect to $n$. These results extend known Poisson local limit theorems to the case when $\lambda = +\infty$. While our results apply to triangular arrays, without the assumption that \(m_n \to 0\) they continue to hold for sums of Bernoulli random variables. In this setting, our growth conditions cover a range of values for $k$ not centered at $\lambda_n$, thus complementing known local limit theorems based on approximation by the normal distribution. In addition, we show that our local limit theorems apply to a scheme of dependent random variables introduced in the work of B.A. Sevast'yanov

Duke Scholars

Published In

Annales Univ. Sci., Budsapest, Sec. Comp.

Publication Date

July 1, 2020

Volume

50
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Simonelli, I., & Simonelli, L. (2020). Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation (Accepted). Annales Univ. Sci., Budsapest, Sec. Comp., 50.
Simonelli, Italo, and Lucia Simonelli. “Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation (Accepted).” Annales Univ. Sci., Budsapest, Sec. Comp. 50 (July 1, 2020).
Simonelli I, Simonelli L. Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation (Accepted). Annales Univ Sci, Budsapest, Sec Comp. 2020 Jul 1;50.
Simonelli, Italo, and Lucia Simonelli. “Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation (Accepted).” Annales Univ. Sci., Budsapest, Sec. Comp., vol. 50, July 2020.
Simonelli I, Simonelli L. Poisson Local Limit Theorems for Poisson's Binomial in the Case of Infinite Limiting Expectation (Accepted). Annales Univ Sci, Budsapest, Sec Comp. 2020 Jul 1;50.

Published In

Annales Univ. Sci., Budsapest, Sec. Comp.

Publication Date

July 1, 2020

Volume

50