Skip to main content

A database of 40 patient-based computational models for benchmarking organ dose estimates in CT.

Publication ,  Journal Article
Samei, E; Ria, F; Tian, X; Segars, PW
Published in: Med Phys
December 2020

PURPOSE: Patient radiation burden in computed tomography (CT) can best be characterized through risk estimates derived from organ doses. Organ doses can be estimated by Monte Carlo simulations of the CT procedures on computational phantoms assumed to emulate the patients. However, the results are subject to uncertainties related to how accurately the patient and CT procedure are modeled. Different methods can lead to different results. This paper, based on decades of organ dosimetry research, offers a database of CT scans, scan specifics, and organ doses computed using a validated Monte Carlo simulation of each patient and acquisition. It is aimed that the database can serve as means to benchmark different organ dose estimation methods against a benchmark dataset. ACQUISITION AND VALIDATION METHODS: Organ doses were estimated for 40 adult patients (22 male, 18 female) who underwent chest and abdominopelvic CT examinations. Patient-based computational models were created for each patient including 26 organs for female and 25 organs for male cases. A Monte Carlo code, previously validated experimentally, was applied to calculate organ doses under constant and two modulated tube current conditions. DATA FORMAT AND USAGE NOTES: The generated database reports organ dose values for chest and abdominopelvic examinations per patient and imaging condition. Patient information and images and scan specifications (energy spectrum, bowtie filter specification, and tube current profiles) are provided. The database is available at publicly accessible digital repositories. POTENTIAL APPLICATIONS: Consistency in patient risk estimation, and associated justification and optimization requires accuracy and consistency in organ dose estimation. The database provided in this paper is a helpful tool to benchmark different organ dose estimation methodologies to facilitate comparisons, assess uncertainties, and improve risk assessment of CT scans based on organ dose.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

December 2020

Volume

47

Issue

12

Start / End Page

6562 / 6566

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Radiation Dosage
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Monte Carlo Method
  • Male
  • Humans
  • Female
  • Computer Simulation
  • Benchmarking
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Samei, E., Ria, F., Tian, X., & Segars, P. W. (2020). A database of 40 patient-based computational models for benchmarking organ dose estimates in CT. Med Phys, 47(12), 6562–6566. https://doi.org/10.1002/mp.14373
Samei, Ehsan, Francesco Ria, Xiaoyu Tian, and Paul W. Segars. “A database of 40 patient-based computational models for benchmarking organ dose estimates in CT.Med Phys 47, no. 12 (December 2020): 6562–66. https://doi.org/10.1002/mp.14373.
Samei E, Ria F, Tian X, Segars PW. A database of 40 patient-based computational models for benchmarking organ dose estimates in CT. Med Phys. 2020 Dec;47(12):6562–6.
Samei, Ehsan, et al. “A database of 40 patient-based computational models for benchmarking organ dose estimates in CT.Med Phys, vol. 47, no. 12, Dec. 2020, pp. 6562–66. Pubmed, doi:10.1002/mp.14373.
Samei E, Ria F, Tian X, Segars PW. A database of 40 patient-based computational models for benchmarking organ dose estimates in CT. Med Phys. 2020 Dec;47(12):6562–6566.

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

December 2020

Volume

47

Issue

12

Start / End Page

6562 / 6566

Location

United States

Related Subject Headings

  • Tomography, X-Ray Computed
  • Radiation Dosage
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Monte Carlo Method
  • Male
  • Humans
  • Female
  • Computer Simulation
  • Benchmarking