Robust Algorithms for TSP and Steiner Tree
Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between the solution's cost and that of an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant approximations on regret for the classical traveling salesman and Steiner tree problems.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Computation Theory & Mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 4605 Data management and data science
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Computation Theory & Mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 4605 Data management and data science
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics