Skip to main content
Journal cover image

AutoAudio: Deep Learning for Automatic Audiogram Interpretation.

Publication ,  Journal Article
Crowson, MG; Lee, JW; Hamour, A; Mahmood, R; Babier, A; Lin, V; Tucci, DL; Chan, TCY
Published in: J Med Syst
August 7, 2020

Hearing loss is the leading human sensory system loss, and one of the leading causes for years lived with disability with significant effects on quality of life, social isolation, and overall health. Coupled with a forecast of increased hearing loss burden worldwide, national and international health organizations have urgently recommended that access to hearing evaluation be expanded to meet demand. The objective of this study was to develop 'AutoAudio' - a novel deep learning proof-of-concept model that accurately and quickly interprets diagnostic audiograms. Adult audiogram reports representing normal, conductive, mixed and sensorineural morphologies were used to train different neural network architectures. Image augmentation techniques were used to increase the training image set size. Classification accuracy on a separate test set was used to assess model performance. The architecture with the highest out-of-training set accuracy was ResNet-101 at 97.5%. Neural network training time varied between 2 to 7 h depending on the depth of the neural network architecture. Each neural network architecture produced misclassifications that arose from failures of the model to correctly label the audiogram with the appropriate hearing loss type. The most commonly misclassified hearing loss type were mixed losses. Re-engineering the process of hearing testing with a machine learning innovation may help enhance access to the growing worldwide population that is expected to require audiologist services. Our results suggest that deep learning may be a transformative technology that enables automatic and accurate audiogram interpretation.

Duke Scholars

Published In

J Med Syst

DOI

EISSN

1573-689X

Publication Date

August 7, 2020

Volume

44

Issue

9

Start / End Page

163

Location

United States

Related Subject Headings

  • Quality of Life
  • Neural Networks, Computer
  • Medical Informatics
  • Machine Learning
  • Humans
  • Hearing Loss
  • Deep Learning
  • Adult
  • 4203 Health services and systems
  • 1117 Public Health and Health Services
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Crowson, M. G., Lee, J. W., Hamour, A., Mahmood, R., Babier, A., Lin, V., … Chan, T. C. Y. (2020). AutoAudio: Deep Learning for Automatic Audiogram Interpretation. J Med Syst, 44(9), 163. https://doi.org/10.1007/s10916-020-01627-1
Crowson, Matthew G., Jong Wook Lee, Amr Hamour, Rafid Mahmood, Aaron Babier, Vincent Lin, Debara L. Tucci, and Timothy C. Y. Chan. “AutoAudio: Deep Learning for Automatic Audiogram Interpretation.J Med Syst 44, no. 9 (August 7, 2020): 163. https://doi.org/10.1007/s10916-020-01627-1.
Crowson MG, Lee JW, Hamour A, Mahmood R, Babier A, Lin V, et al. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. J Med Syst. 2020 Aug 7;44(9):163.
Crowson, Matthew G., et al. “AutoAudio: Deep Learning for Automatic Audiogram Interpretation.J Med Syst, vol. 44, no. 9, Aug. 2020, p. 163. Pubmed, doi:10.1007/s10916-020-01627-1.
Crowson MG, Lee JW, Hamour A, Mahmood R, Babier A, Lin V, Tucci DL, Chan TCY. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. J Med Syst. 2020 Aug 7;44(9):163.
Journal cover image

Published In

J Med Syst

DOI

EISSN

1573-689X

Publication Date

August 7, 2020

Volume

44

Issue

9

Start / End Page

163

Location

United States

Related Subject Headings

  • Quality of Life
  • Neural Networks, Computer
  • Medical Informatics
  • Machine Learning
  • Humans
  • Hearing Loss
  • Deep Learning
  • Adult
  • 4203 Health services and systems
  • 1117 Public Health and Health Services