Skip to main content

Infrastructure and tools for teaching computing throughout the statistical curriculum

Publication ,  Journal Article
Cetinkaya-Rundel, M; Rundel, CW
August 24, 2017

Modern statistics is fundamentally a computational discipline, but too often this fact is not reflected in our statistics curricula. With the rise of big data and data science it has become increasingly clear that students both want, expect, and need explicit training in this area of the discipline. Additionally, recent curricular guidelines clearly state that working with data requires extensive computing skills and that statistics students should be fluent in accessing, manipulating, analyzing, and modeling with professional statistical analysis software. Much has been written in the statistics education literature about pedagogical tools and approaches to provide a practical computational foundation for students. This article discusses the computational infrastructure and toolkit choices to allow for these pedagogical innovations while minimizing frustration and improving adoption for both our students and instructors.

Duke Scholars

DOI

Publication Date

August 24, 2017
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cetinkaya-Rundel, M., & Rundel, C. W. (2017). Infrastructure and tools for teaching computing throughout the statistical curriculum. https://doi.org/10.7287/peerj.preprints.3181
Cetinkaya-Rundel, Mine, and Colin W. Rundel. “Infrastructure and tools for teaching computing throughout the statistical curriculum,” August 24, 2017. https://doi.org/10.7287/peerj.preprints.3181.
Cetinkaya-Rundel, Mine, and Colin W. Rundel. Infrastructure and tools for teaching computing throughout the statistical curriculum. Aug. 2017. Crossref, doi:10.7287/peerj.preprints.3181.

DOI

Publication Date

August 24, 2017