
Sharp RIP bound for sparse signal and low-rank matrix recovery
Publication
, Journal Article
Cai, TT; Zhang, A
Published in: Applied and Computational Harmonic Analysis
July 2013
Duke Scholars
Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
July 2013
Volume
35
Issue
1
Start / End Page
74 / 93
Publisher
Elsevier BV
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Cai, T. T., & Zhang, A. (2013). Sharp RIP bound for sparse signal and low-rank matrix recovery. Applied and Computational Harmonic Analysis, 35(1), 74–93. https://doi.org/10.1016/j.acha.2012.07.010
Cai, T Tony, and Anru Zhang. “Sharp RIP bound for sparse signal and low-rank matrix recovery.” Applied and Computational Harmonic Analysis 35, no. 1 (July 2013): 74–93. https://doi.org/10.1016/j.acha.2012.07.010.
Cai TT, Zhang A. Sharp RIP bound for sparse signal and low-rank matrix recovery. Applied and Computational Harmonic Analysis. 2013 Jul;35(1):74–93.
Cai, T. Tony, and Anru Zhang. “Sharp RIP bound for sparse signal and low-rank matrix recovery.” Applied and Computational Harmonic Analysis, vol. 35, no. 1, Elsevier BV, July 2013, pp. 74–93. Crossref, doi:10.1016/j.acha.2012.07.010.
Cai TT, Zhang A. Sharp RIP bound for sparse signal and low-rank matrix recovery. Applied and Computational Harmonic Analysis. Elsevier BV; 2013 Jul;35(1):74–93.

Published In
Applied and Computational Harmonic Analysis
DOI
ISSN
1063-5203
Publication Date
July 2013
Volume
35
Issue
1
Start / End Page
74 / 93
Publisher
Elsevier BV
Related Subject Headings
- Numerical & Computational Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics