Multivariate functional data modeling with time-varying clustering
We consider the setting of multivariate functional data collected over time at each of a set of sites. Our objective is to implement model-based clustering of the functions across the sites where we allow such clustering to vary over time. Anticipating dependence between the functions within a site as well as across sites, we model the collection of functions using a multivariate Gaussian process. With many sites and several functions at each site, we use dimension reduction to provide a computationally manageable stochastic process specification. To jointly cluster the functions, we use the Dirichlet process which enables shared labeling of the functions across the sites. Specifically, we cluster functions based on their response to exogenous variables. Though the functions arise over continuous time, clustering in continuous time is extremely computationally demanding and not of practical interest. Therefore, we employ partitioning of the timescale to capture time-varying clustering. Our illustrative setting is bivariate, monitoring ozone and PM
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics