Skip to main content
Journal cover image

Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device.

Publication ,  Journal Article
Kent, R; Forman, J; Bailey, A; Cormier, J; Park, G; Crandall, J; Arbogast, KB; Myers, B
Published in: Annals of biomedical engineering
November 2020

This paper reports the development of a test device for replicating unique features of concussion-causing helmet-to-ground impacts. Helmet-to-ground impacts are characterized by an oblique impact velocity vector, preimpact rotational motion of the helmeted head, and an impact into a compliant frictional surface of unknown effective mass. No helmet assessment testing program replicates these impact characteristics, yet they influence brain injury risk and therefore may influence helmet design priorities. To replicate these mechanics, the carriage of a drop tower was modified by the addition of a curvilinear bearing track and a hinged torso-neck fixture to which a helmeted head of a Hybrid III anthropomorphic test device was mounted. Preimpact rotational motion of the head was imparted by forcing a link arm to follow the curvilinear path as the carriage fell under gravity. At impact, the rotating helmeted head struck a vertically mounted surface. The ground impact features of head kinematics are illustrated by comparing rear impacts into a rigid, low-friction surface against those into a compliant frictional surface simulating turf. With the rigid, low-friction surface, the head experienced a change in rotational rate of approximately 40 rad/s, which corresponded to a peak rotational acceleration of approximately αy = - 4000 rad/s2. In contrast, peak rotational acceleration with the compliant frictional surface was approximately αy = - 1000 rad/s2 while the helmet was in contact with the surface. Neck loads were significantly greater with the compliant frictional surface. Translational head acceleration was less sensitive to the surface characteristics, with the peak of the anterior-posterior component essentially unchanged.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Annals of biomedical engineering

DOI

EISSN

1573-9686

ISSN

0090-6964

Publication Date

November 2020

Volume

48

Issue

11

Start / End Page

2639 / 2651

Related Subject Headings

  • Rotation
  • Neck Injuries
  • Neck
  • Models, Biological
  • Humans
  • Head Protective Devices
  • Head
  • Football
  • Brain Concussion
  • Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kent, R., Forman, J., Bailey, A., Cormier, J., Park, G., Crandall, J., … Myers, B. (2020). Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device. Annals of Biomedical Engineering, 48(11), 2639–2651. https://doi.org/10.1007/s10439-020-02621-x
Kent, Richard, Jason Forman, Ann Bailey, Joseph Cormier, Gwansik Park, Jeff Crandall, Kristy B. Arbogast, and Barry Myers. “Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device.Annals of Biomedical Engineering 48, no. 11 (November 2020): 2639–51. https://doi.org/10.1007/s10439-020-02621-x.
Kent R, Forman J, Bailey A, Cormier J, Park G, Crandall J, et al. Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device. Annals of biomedical engineering. 2020 Nov;48(11):2639–51.
Kent, Richard, et al. “Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device.Annals of Biomedical Engineering, vol. 48, no. 11, Nov. 2020, pp. 2639–51. Epmc, doi:10.1007/s10439-020-02621-x.
Kent R, Forman J, Bailey A, Cormier J, Park G, Crandall J, Arbogast KB, Myers B. Surface Contact Features, Impact Obliquity, and Preimpact Rotational Motion in Concussive Helmet-to-Ground Impacts: Assessment via a New Impact Test Device. Annals of biomedical engineering. 2020 Nov;48(11):2639–2651.
Journal cover image

Published In

Annals of biomedical engineering

DOI

EISSN

1573-9686

ISSN

0090-6964

Publication Date

November 2020

Volume

48

Issue

11

Start / End Page

2639 / 2651

Related Subject Headings

  • Rotation
  • Neck Injuries
  • Neck
  • Models, Biological
  • Humans
  • Head Protective Devices
  • Head
  • Football
  • Brain Concussion
  • Biomedical Engineering