Skip to main content

HIF-1α in heart: protective mechanisms.

Publication ,  Journal Article
Wu, J; Chen, P; Li, Y; Ardell, C; Der, T; Shohet, R; Chen, M; Wright, GL
Published in: Am J Physiol Heart Circ Physiol
September 15, 2013

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that directs many of the cellular responses to hypoxia. In these studies, we have used a mouse model containing a cardiac-specific, oxygen-stabilized, doxycycline (Dox)-off regulated HIF-1α transgene to probe the role of HIF-1α in cardioprotection. Hearts used in these studies were derived from wild-type (WT), noninduced (Non-I), and 2 day (2D) and 6 day (6D) Dox-deprived mice. Whereas HIF-1α protein is undetectable in WT mice, it is present in heart tissue of "noninduced" transgenic mice, presumably because of leakiness of the promoter construct. In mice denied Dox for 2 or 6 days, HIF-1α is overexpressed to a much greater extent than Non-I or WT animals, as expected. WT and HIF-1α-expressing hearts (Non-I, 2D and 6D induced) were subjected to 30 min of ischemia, and functional recovery was measured upon reperfusion. Recovery of preischemic left ventricular developed pressure was 14% for WT, 67% for Non-I hearts, 64% for 2D-induced, and 62% for 6D-induced hearts. 6D-induced HIF hearts have increased preischemic glycogen reserves, higher glycogen synthase protein levels, and significantly higher lactic acid release during ischemia. 6D-induced HIF hearts were also better able to maintain ATP levels during ischemia compared with WT and Non-I hearts. Interestingly, Non-I hearts showed no significant increase in glycogen reserves, glycolytic flux, or greater ATP preservation during ischemia and yet were protected to a similar extent as the 6D-induced hearts. Finally, the mitochondrial membrane potential of isolated adult myocytes was monitored during anoxia or treatments with cyanide and 2-deoxyglucose. HIF-1α expression was shown to protect mitochondrial polarization during both stress treatments. Taken together these data indicate that, while HIF-1α expression in heart does induce increases in compensatory glycolytic capacity, these changes are not necessarily required for cardioprotection, at least in this model of ischemic stress.

Duke Scholars

Published In

Am J Physiol Heart Circ Physiol

DOI

EISSN

1522-1539

Publication Date

September 15, 2013

Volume

305

Issue

6

Start / End Page

H821 / H828

Location

United States

Related Subject Headings

  • Reperfusion Injury
  • Recovery of Function
  • Oxygen
  • Mice, Transgenic
  • Mice
  • Male
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Glycolysis
  • Glycogen
  • Cardiovascular System & Hematology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wu, J., Chen, P., Li, Y., Ardell, C., Der, T., Shohet, R., … Wright, G. L. (2013). HIF-1α in heart: protective mechanisms. Am J Physiol Heart Circ Physiol, 305(6), H821–H828. https://doi.org/10.1152/ajpheart.00140.2013
Wu, Joe, Ping Chen, Ying Li, Chris Ardell, Tatyana Der, Ralph Shohet, Minghua Chen, and Gary L. Wright. “HIF-1α in heart: protective mechanisms.Am J Physiol Heart Circ Physiol 305, no. 6 (September 15, 2013): H821–28. https://doi.org/10.1152/ajpheart.00140.2013.
Wu J, Chen P, Li Y, Ardell C, Der T, Shohet R, et al. HIF-1α in heart: protective mechanisms. Am J Physiol Heart Circ Physiol. 2013 Sep 15;305(6):H821–8.
Wu, Joe, et al. “HIF-1α in heart: protective mechanisms.Am J Physiol Heart Circ Physiol, vol. 305, no. 6, Sept. 2013, pp. H821–28. Pubmed, doi:10.1152/ajpheart.00140.2013.
Wu J, Chen P, Li Y, Ardell C, Der T, Shohet R, Chen M, Wright GL. HIF-1α in heart: protective mechanisms. Am J Physiol Heart Circ Physiol. 2013 Sep 15;305(6):H821–H828.

Published In

Am J Physiol Heart Circ Physiol

DOI

EISSN

1522-1539

Publication Date

September 15, 2013

Volume

305

Issue

6

Start / End Page

H821 / H828

Location

United States

Related Subject Headings

  • Reperfusion Injury
  • Recovery of Function
  • Oxygen
  • Mice, Transgenic
  • Mice
  • Male
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Glycolysis
  • Glycogen
  • Cardiovascular System & Hematology