![Journal cover image](https://secure.syndetics.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=dukeuniv)
Self-Consistent Calculation of the Localized Orbital Scaling Correction for Correct Electron Densities and Energy-Level Alignments in Density Functional Theory.
The recently developed localized orbital scaling correction (LOSC) method shows the ability to systematically and size-consistently reduce the delocalization error existing in conventional density functional approximations (DFAs). However, the application of LOSC to DFAs was mainly through a post self-consistent field (SCF) manner, and few results from applying LOSC to DFAs in an SCF manner have been reported. The reason is that the originally proposed SCF approach to SCF-LOSC calculation uses an approximate Hamiltonian and encounters convergence problems easily in practice. In this work, we develop a new SCF approach with a correct Hamiltonian and achieve reliable SCF-LOSC calculations. We demonstrate the capability of the new SCF approach for SCF-LOSC to correctly describe the electron densities, total energies, and energy-level alignment for the molecular dissociation process, while conventional DFAs or LOSC-DFAs with post-SCF calculations show large errors. This work demonstrates that the new SCF approach for SCF-LOSC would be a promising method for studying problems for correct electron densities and energy-level alignments in large systems.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 34 Chemical sciences
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
![Journal cover image](https://secure.syndetics.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=dukeuniv)
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 34 Chemical sciences
- 03 Chemical Sciences
- 02 Physical Sciences