Skip to main content

Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters

Publication ,  Journal Article
Keskin, NB; Li, Y; Sunar, N
Published in: Operations Research
September 1, 2025

We consider an electric utility company that serves retail electricity customers over a discrete-time horizon. In each period, the company observes the customers’ consumption and high-dimensional features on customer characteristics and exogenous factors. A distinctive element of our work is that these features exhibit three types of heterogeneity—over time, customers, or both. Based on the consumption and feature observations, the company can dynamically adjust the retail electricity price at the customer level. The consumption depends on the features: there is an underlying structure of clusters in the feature space, and the relationship between consumption and features is different in each cluster. Initially, the company knows neither the underlying cluster structure nor the corresponding consumption models. We design a data-driven policy of joint spectral clustering and feature-based pricing and show that our policy achieves near-optimal performance; that is, its average regret converges to zero at the fastest achievable rate. This work is the first to theoretically analyze joint clustering and feature-based pricing with different types of feature heterogeneity. Our case study based on real-life smart meter data from Texas illustrates that our policy increases company profits by more than 100% over a three-month period relative to the company policy and is robust to various forms of model misspecification.

Duke Scholars

Published In

Operations Research

DOI

EISSN

1526-5463

ISSN

0030-364X

Publication Date

September 1, 2025

Volume

73

Issue

5

Start / End Page

2636 / 2660

Related Subject Headings

  • Operations Research
  • 3507 Strategy, management and organisational behaviour
  • 1503 Business and Management
  • 0802 Computation Theory and Mathematics
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Keskin, N. B., Li, Y., & Sunar, N. (2025). Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters. Operations Research, 73(5), 2636–2660. https://doi.org/10.1287/opre.2022.0112
Keskin, N. B., Y. Li, and N. Sunar. “Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters.” Operations Research 73, no. 5 (September 1, 2025): 2636–60. https://doi.org/10.1287/opre.2022.0112.
Keskin NB, Li Y, Sunar N. Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters. Operations Research. 2025 Sep 1;73(5):2636–60.
Keskin, N. B., et al. “Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters.” Operations Research, vol. 73, no. 5, Sept. 2025, pp. 2636–60. Scopus, doi:10.1287/opre.2022.0112.
Keskin NB, Li Y, Sunar N. Data-Driven Clustering and Feature-Based Retail Electricity Pricing with Smart Meters. Operations Research. 2025 Sep 1;73(5):2636–2660.

Published In

Operations Research

DOI

EISSN

1526-5463

ISSN

0030-364X

Publication Date

September 1, 2025

Volume

73

Issue

5

Start / End Page

2636 / 2660

Related Subject Headings

  • Operations Research
  • 3507 Strategy, management and organisational behaviour
  • 1503 Business and Management
  • 0802 Computation Theory and Mathematics
  • 0102 Applied Mathematics