Deep convolutional neural networks to predict cardiovascular risk from computed tomography.
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment. Here, we show a robust and time-efficient deep learning system to automatically quantify coronary calcium on routine cardiac-gated and non-gated CT. As we evaluate in 20,084 individuals from distinct asymptomatic (Framingham Heart Study, NLST) and stable and acute chest pain (PROMISE, ROMICAT-II) cohorts, the automated score is a strong predictor of cardiovascular events, independent of risk factors (multivariable-adjusted hazard ratios up to 4.3), shows high correlation with manual quantification, and robust test-retest reliability. Our results demonstrate the clinical value of a deep learning system for the automated prediction of cardiovascular events. Implementation into clinical practice would address the unmet need of automating proven imaging biomarkers to guide management and improve population health.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Risk Assessment
- Retrospective Studies
- Reproducibility of Results
- Middle Aged
- Male
- Image Processing, Computer-Assisted
- Humans
- Heart Disease Risk Factors
- Follow-Up Studies
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Tomography, X-Ray Computed
- Risk Assessment
- Retrospective Studies
- Reproducibility of Results
- Middle Aged
- Male
- Image Processing, Computer-Assisted
- Humans
- Heart Disease Risk Factors
- Follow-Up Studies