In-Place Printing of Flexible Electrolyte-Gated Carbon Nanotube Transistors with Enhanced Stability.
Ion gel-based dielectrics have long been considered for enabling low-voltage operation in printed thin-film transistors (TFTs), but their compatibility with in-place printing (a streamlined, direct-write printing approach where devices never leave the printer mid- or post-process) remains unexplored. Here, we demonstrate a simple and rapid 4-step in-place printing procedure for producing low-voltage electrolyte-gated carbon nanotube (CNT) thin-film transistors at low temperature (80 °C). This process consists of the use of polymer-wrapped CNT inks for printed channels, silver nanowire inks for printed electrodes, and imidazolium-based ion gel inks for printed gate dielectrics. We find that the efficacy of rinsing CNT films and printing an ion gel in-place is optimized using an elevated platen temperature (as opposed to external rinsing or post-process annealing), where resultant devices exhibited on/off-current ratios exceeding 103, mobilities exceeding 10 cm2V-1s-1, and gate hysteresis of only 0.1 V. Additionally, devices were tested under mechanical strain and long-term bias, showing exceptional flexibility and electrochemical stability over the course of 14-hour bias tests. The findings presented here widen the potential scope of print-in-place (PIP) devices and reveal new avenues of investigation for the improvement of bias stress stability in electrolyte-gated transistors.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 4009 Electronics, sensors and digital hardware
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 4009 Electronics, sensors and digital hardware
- 0906 Electrical and Electronic Engineering