Probability law of turbulent kinetic energy in the atmospheric surface layer
The probability density function p(k) of the turbulent kinetic energy k is investigated for diabatic atmospheric surface layer (ASL) flows. When the velocity components are near-Gaussian and their squared amplitudes are nearly independent, the resulting p(k) is shown to be γ-distributed with exponents that vary from 0.8 to 1.8. A nonlinear Langevin equation that preserves a γ-distributed p(k), but allows linear relaxation of k to its mean state, is proposed and tested using multiple ASL data sets. The three parameters needed to describe the drift and nonlinear diffusion terms can be determined from the ground shear stress and the mean velocity at height z. Using these model parameters, the Langevin equation reproduces the measured p(k) with minimal Kullback-Leibler divergence.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 4012 Fluid mechanics and thermal engineering
- 0913 Mechanical Engineering
- 0203 Classical Physics
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 4012 Fluid mechanics and thermal engineering
- 0913 Mechanical Engineering
- 0203 Classical Physics
- 0102 Applied Mathematics