Electron ratcheting in self-assembled soft matter.
Ratcheted multi-step hopping electron transfer systems can plausibly produce directional charge transport over very large distances without requiring a source-drain voltage bias. We examine molecular strategies to realize ratcheted charge transport based on multi-step charge hopping, and we illustrate two ratcheting mechanisms with examples based on DNA structures. The charge transport times and currents that may be generated in these assemblies are also estimated using kinetic simulations. The first ratcheting mechanism described for nanoscale systems requires local electric fields on the 109 V/m scale to realize nearly 100% population transport. The second ratcheting mechanism for even larger systems, based on electrochemical gating, is estimated to generate currents as large as 0.1 pA for DNA structures that are a few μm in length with a gate voltage of about 5 V, a magnitude comparable to currents measured in DNA wires at the nanoscale when a source-drain voltage bias of similar magnitude is applied, suggesting an approach to considerably extend the distance range over which DNA charge transport devices may operate.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Static Electricity
- Nanostructures
- Kinetics
- Electrochemistry
- Electric Conductivity
- DNA
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Static Electricity
- Nanostructures
- Kinetics
- Electrochemistry
- Electric Conductivity
- DNA
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences