The shifted boundary method for solid mechanics
We propose a new embedded/immersed framework for computational solid mechanics, aimed at vastly speeding up the cycle of design and analysis in complex geometry. In many problems of interest, our approach bypasses the complexities associated with the generation of CAD representations and subsequent body-fitted meshing, since it only requires relatively simple representations of the surface geometries to be simulated, such as collections of disconnected triangles in three dimensions, widely used in computer graphics. Our approach avoids the complex treatment of cut elements, by resorting to an approximate boundary representation and a special (shifted) treatment of the boundary conditions to maintain optimal accuracy. Natural applications of the proposed approach are problems in biomechanics and geomechanics, in which the geometry to be simulated is obtained from imaging techniques. Similarly, our computational framework can easily treat geometries that are the result of topology optimization methods and are realized with additive manufacturing technologies. We present a full analysis of stability and convergence of the method, and we complement it with an extensive set of computational experiments in two and three dimensions, for progressively more complex geometries.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 40 Engineering
- 09 Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 40 Engineering
- 09 Engineering