
Evaluation of a geriatrics primary care model using prospective matching to guide enrollment.
BACKGROUND: Few definitive guidelines exist for rigorous large-scale prospective evaluation of nonrandomized programs and policies that require longitudinal primary data collection. In Veterans Affairs (VA) we identified a need to understand the impact of a geriatrics primary care model (referred to as GeriPACT); however, randomization of patients to GeriPACT vs. a traditional PACT was not feasible because GeriPACT has been rolled out nationally, and the decision to transition from PACT to GeriPACT is made jointly by a patient and provider. We describe our study design used to evaluate the comparative effectiveness of GeriPACT compared to a traditional primary care model (referred to as PACT) on patient experience and quality of care metrics. METHODS: We used prospective matching to guide enrollment of GeriPACT-PACT patient dyads across 57 VA Medical Centers. First, we identified matches based an array of administratively derived characteristics using a combination of coarsened exact and distance function matching on 11 identified key variables that may function as confounders. Once a GeriPACT patient was enrolled, matched PACT patients were then contacted for recruitment using pre-assigned priority categories based on the distance function; if eligible and consented, patients were enrolled and followed with telephone surveys for 18 months. RESULTS: We successfully enrolled 275 matched dyads in near real-time, with a median time of 7 days between enrolling a GeriPACT patient and a closely matched PACT patient. Standardized mean differences of < 0.2 among nearly all baseline variables indicates excellent baseline covariate balance. Exceptional balance on survey-collected baseline covariates not available at the time of matching suggests our procedure successfully controlled many known, but administratively unobserved, drivers of entrance to GeriPACT. CONCLUSIONS: We present an important process to prospectively evaluate the effects of different treatments when randomization is infeasible and provide guidance to researchers who may be interested in implementing a similar approach. Rich matching variables from the pre-treatment period that reflect treatment assignment mechanisms create a high quality comparison group from which to recruit. This design harnesses the power of national administrative data coupled with collection of patient reported outcomes, enabling rigorous evaluation of non-randomized programs or policies.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Veterans
- United States Department of Veterans Affairs
- United States
- Surveys and Questionnaires
- Primary Health Care
- Humans
- Geriatrics
- General & Internal Medicine
- 4206 Public health
- 4202 Epidemiology
Citation

Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Veterans
- United States Department of Veterans Affairs
- United States
- Surveys and Questionnaires
- Primary Health Care
- Humans
- Geriatrics
- General & Internal Medicine
- 4206 Public health
- 4202 Epidemiology