Skip to main content
Journal cover image

A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.

Publication ,  Journal Article
Steinhardt, E; Hyun, N-SP; Koh, J-S; Freeburn, G; Rosen, MH; Temel, FZ; Patek, SN; Wood, RJ
Published in: Proceedings of the National Academy of Sciences of the United States of America
August 2021

Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

August 2021

Volume

118

Issue

33

Start / End Page

e2026833118

Related Subject Headings

  • Robotics
  • Motor Activity
  • Models, Biological
  • Humans
  • Energy Transfer
  • Crustacea
  • Biomechanical Phenomena
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Steinhardt, E., Hyun, N.-S., Koh, J.-S., Freeburn, G., Rosen, M. H., Temel, F. Z., … Wood, R. J. (2021). A physical model of mantis shrimp for exploring the dynamics of ultrafast systems. Proceedings of the National Academy of Sciences of the United States of America, 118(33), e2026833118. https://doi.org/10.1073/pnas.2026833118
Steinhardt, Emma, Nak-Seung P. Hyun, Je-Sung Koh, Gregory Freeburn, Michelle H. Rosen, Fatma Zeynep Temel, S. N. Patek, and Robert J. Wood. “A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.Proceedings of the National Academy of Sciences of the United States of America 118, no. 33 (August 2021): e2026833118. https://doi.org/10.1073/pnas.2026833118.
Steinhardt E, Hyun N-SP, Koh J-S, Freeburn G, Rosen MH, Temel FZ, et al. A physical model of mantis shrimp for exploring the dynamics of ultrafast systems. Proceedings of the National Academy of Sciences of the United States of America. 2021 Aug;118(33):e2026833118.
Steinhardt, Emma, et al. “A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.Proceedings of the National Academy of Sciences of the United States of America, vol. 118, no. 33, Aug. 2021, p. e2026833118. Epmc, doi:10.1073/pnas.2026833118.
Steinhardt E, Hyun N-SP, Koh J-S, Freeburn G, Rosen MH, Temel FZ, Patek SN, Wood RJ. A physical model of mantis shrimp for exploring the dynamics of ultrafast systems. Proceedings of the National Academy of Sciences of the United States of America. 2021 Aug;118(33):e2026833118.
Journal cover image

Published In

Proceedings of the National Academy of Sciences of the United States of America

DOI

EISSN

1091-6490

ISSN

0027-8424

Publication Date

August 2021

Volume

118

Issue

33

Start / End Page

e2026833118

Related Subject Headings

  • Robotics
  • Motor Activity
  • Models, Biological
  • Humans
  • Energy Transfer
  • Crustacea
  • Biomechanical Phenomena
  • Animals