Convection-induced singularity suppression in the keller-segel and other non-linear PDEs
In this paper we study the effect of the addition of a convective term, and of the resulting increased dissipation rate, on the growth of solutions to a general class of non-linear parabolic PDEs. In particular, we show that blow-up in these models can always be prevented if the added drift has a small enough dissipation time. We also prove a general result relating the dissipation time and the effective diffusivity of stationary cellular flows, which allows us to obtain examples of simple incompressible flows with arbitrarily small dissipation times. As an application, we show that blow-up in the Keller-Segel model of chemotaxis can always be prevented if the velocity field of the ambient fluid has a sufficiently small dissipation time. We also study reaction-diffusion equations with ignition-type nonlinearities, and show that the reaction can always be quenched by the addition of a convective term with a small enough dissipation time, provided the average initial temperature is initially below the ignition threshold.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics