
The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain
Publication
, Journal Article
Elgindi, TM; Jeong, IJ
Published in: Advances in Mathematics
December 24, 2021
We consider the 3D incompressible Euler equations in vorticity form in the following fundamental domain for the octahedral symmetry group: {(x1,x2,x3):0
Duke Scholars
Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
December 24, 2021
Volume
393
Related Subject Headings
- General Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Elgindi, T. M., & Jeong, I. J. (2021). The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain. Advances in Mathematics, 393. https://doi.org/10.1016/j.aim.2021.108091
Elgindi, T. M., and I. J. Jeong. “The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain.” Advances in Mathematics 393 (December 24, 2021). https://doi.org/10.1016/j.aim.2021.108091.
Elgindi TM, Jeong IJ. The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain. Advances in Mathematics. 2021 Dec 24;393.
Elgindi, T. M., and I. J. Jeong. “The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain.” Advances in Mathematics, vol. 393, Dec. 2021. Scopus, doi:10.1016/j.aim.2021.108091.
Elgindi TM, Jeong IJ. The incompressible Euler equations under octahedral symmetry: Singularity formation in a fundamental domain. Advances in Mathematics. 2021 Dec 24;393.

Published In
Advances in Mathematics
DOI
EISSN
1090-2082
ISSN
0001-8708
Publication Date
December 24, 2021
Volume
393
Related Subject Headings
- General Mathematics
- 0101 Pure Mathematics