Field support vector regression
In regression tasks for static data, existing methods often assume that they were generated from an identical and independent distribution (i.i.d.). However, violation can be found when input samples may form groups, each affected by a certain different domain. In this case, style consistency exists within a same group, leading to degraded performance when conventional machine learning models were applied due to the violation of the i.i.d. assumption. In this paper, we propose one novel regression model named Field Support Vector Regression (F-SVR) without i.i.d. assumption. Specifically, we perform a style normalization transformation learning and the regression model learning simultaneously. An alternative optimization with final convergence guaranteed is designed, as well as a transductive learning algorithm, enabling extension on unseen styles during the testing phase. Experiments are conducted on two synthetic as well as two real benchmark data sets. Results show that the proposed F-SVR significantly outperforms many other state-of-the-art regression models in all the used data sets.
Duke Scholars
DOI
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
DOI
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences