Skip to main content

Kernel maximum a posteriori classification with error bound analysis

Publication ,  Chapter
Xu, Z; Huang, K; Zhu, J; King, I; Lyu, MR
October 27, 2008

Kernel methods have been widely used in data classification. Many kernel-based classifiers like Kernel Support Vector Machines (KSVM) assume that data can be separated by a hyperplane in the feature space. These methods do not consider the data distribution. This paper proposes a novel Kernel Maximum A Posteriori (KMAP) classification method, which implements a Gaussian density distribution assumption in the feature space and can be regarded as a more generalized classification method than other kernel-based classifier such as Kernel Fisher Discriminant Analysis (KFDA). We also adopt robust methods for parameter estimation. In addition, the error bound analysis for KMAP indicates the effectiveness of the Gaussian density assumption in the feature space. Furthermore, KMAP achieves very promising results on eight UCI benchmark data sets against the competitive methods. © 2008 Springer-Verlag Berlin Heidelberg.

Duke Scholars

DOI

Publication Date

October 27, 2008

Volume

4984 LNCS

Start / End Page

841 / 850

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xu, Z., Huang, K., Zhu, J., King, I., & Lyu, M. R. (2008). Kernel maximum a posteriori classification with error bound analysis (Vol. 4984 LNCS, pp. 841–850). https://doi.org/10.1007/978-3-540-69158-7_87
Xu, Z., K. Huang, J. Zhu, I. King, and M. R. Lyu. “Kernel maximum a posteriori classification with error bound analysis,” 4984 LNCS:841–50, 2008. https://doi.org/10.1007/978-3-540-69158-7_87.
Xu Z, Huang K, Zhu J, King I, Lyu MR. Kernel maximum a posteriori classification with error bound analysis. In 2008. p. 841–50.
Xu, Z., et al. Kernel maximum a posteriori classification with error bound analysis. Vol. 4984 LNCS, 2008, pp. 841–50. Scopus, doi:10.1007/978-3-540-69158-7_87.
Xu Z, Huang K, Zhu J, King I, Lyu MR. Kernel maximum a posteriori classification with error bound analysis. 2008. p. 841–850.

DOI

Publication Date

October 27, 2008

Volume

4984 LNCS

Start / End Page

841 / 850

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences