Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality
We analyze a new spectral graph matching algorithm, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), for recovering the latent vertex correspondence between two unlabeled, edge-correlated weighted graphs. Extending the exact recovery guarantees established in a companion paper for Gaussian weights, in this work, we prove the universality of these guarantees for a general correlated Wigner model. In particular, for two Erdős-Rényi graphs with edge correlation coefficient 1 - σ2 and average degree at least polylog (n) , we show that GRAMPA exactly recovers the latent vertex correspondence with high probability when σ≲ 1 / polylog (n). Moreover, we establish a similar guarantee for a variant of GRAMPA, corresponding to a tighter quadratic programming relaxation of the quadratic assignment problem. Our analysis exploits a resolvent representation of the GRAMPA similarity matrix and local laws for the resolvents of sparse Wigner matrices.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 08 Information and Computing Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Numerical & Computational Mathematics
- 49 Mathematical sciences
- 46 Information and computing sciences
- 08 Information and Computing Sciences
- 01 Mathematical Sciences