Skip to main content
Journal cover image

Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality

Publication ,  Journal Article
Fan, Z; Mao, C; Wu, Y; Xu, J
Published in: Foundations of Computational Mathematics
October 1, 2023

We analyze a new spectral graph matching algorithm, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), for recovering the latent vertex correspondence between two unlabeled, edge-correlated weighted graphs. Extending the exact recovery guarantees established in a companion paper for Gaussian weights, in this work, we prove the universality of these guarantees for a general correlated Wigner model. In particular, for two Erdős-Rényi graphs with edge correlation coefficient 1 - σ2 and average degree at least polylog (n) , we show that GRAMPA exactly recovers the latent vertex correspondence with high probability when σ≲ 1 / polylog (n). Moreover, we establish a similar guarantee for a variant of GRAMPA, corresponding to a tighter quadratic programming relaxation of the quadratic assignment problem. Our analysis exploits a resolvent representation of the GRAMPA similarity matrix and local laws for the resolvents of sparse Wigner matrices.

Duke Scholars

Published In

Foundations of Computational Mathematics

DOI

EISSN

1615-3383

ISSN

1615-3375

Publication Date

October 1, 2023

Volume

23

Issue

5

Start / End Page

1567 / 1617

Related Subject Headings

  • Numerical & Computational Mathematics
  • 49 Mathematical sciences
  • 46 Information and computing sciences
  • 08 Information and Computing Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fan, Z., Mao, C., Wu, Y., & Xu, J. (2023). Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality. Foundations of Computational Mathematics, 23(5), 1567–1617. https://doi.org/10.1007/s10208-022-09575-7
Fan, Z., C. Mao, Y. Wu, and J. Xu. “Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality.” Foundations of Computational Mathematics 23, no. 5 (October 1, 2023): 1567–1617. https://doi.org/10.1007/s10208-022-09575-7.
Fan Z, Mao C, Wu Y, Xu J. Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality. Foundations of Computational Mathematics. 2023 Oct 1;23(5):1567–617.
Fan, Z., et al. “Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality.” Foundations of Computational Mathematics, vol. 23, no. 5, Oct. 2023, pp. 1567–617. Scopus, doi:10.1007/s10208-022-09575-7.
Fan Z, Mao C, Wu Y, Xu J. Spectral Graph Matching and Regularized Quadratic Relaxations II: Erdős-Rényi Graphs and Universality. Foundations of Computational Mathematics. 2023 Oct 1;23(5):1567–1617.
Journal cover image

Published In

Foundations of Computational Mathematics

DOI

EISSN

1615-3383

ISSN

1615-3375

Publication Date

October 1, 2023

Volume

23

Issue

5

Start / End Page

1567 / 1617

Related Subject Headings

  • Numerical & Computational Mathematics
  • 49 Mathematical sciences
  • 46 Information and computing sciences
  • 08 Information and Computing Sciences
  • 01 Mathematical Sciences