Climate change weakens the impact of disturbance interval on the growth rate of natural populations of Venus flytrap
Disturbances elicit both positive and negative effects on organisms; these effects vary in their strength and their timing. Effects of disturbance interval (i.e., the length of time between disturbances) on population growth will depend on both the timing and strength of positive and negative effects of disturbances. Climate change can modify the relative strengths of these positive and negative effects, leading to altered optimal disturbance intervals (the disturbance interval at which population growth rate is highest) and changes in the sensitivity of population growth rate to disturbance interval. While we know that climate may alter impacts of disturbance in some systems, we have a poor understanding of which effects of disturbance and which vital rates might drive an altered response to disturbance interval in a changing climate. We use demographic monitoring of natural populations of Dionaea muscipula, the Venus flytrap, that have experienced natural and managed fires, combined with realistic past and future climate projections, to construct climate- and fire-driven integral projection models (IPMs). We use these IPMs to compare the effect of fire return interval (FRI) on population growth rate in past and future climates. To dissect the mechanisms driving FRI response, we then construct IPMs with demographic data from an experimental manipulation of fire effects (ash addition, neighbor removal) and an accidental fire. Our results show that an FRI of 10 years is optimal for D. muscipula in past climate conditions, but a longer FRI (12 years) is optimal in future climate conditions. Further, deviations from optimal FRI reduce population growth rate dramatically in the past climate, but this reduction is muted in a future climate (future minus past sensitivity = 0.006, 95% CI [0.002, 0.011]). Finally, our experimental work suggests that fire effects are driven in part by positive, additive effects of competitor removal and ash addition immediately following a fire; for one population, both these treatments significantly increased population growth rate. Our work suggests that climate change can alter the response of populations to disturbance, highlighting the need to consider the interacting effects of multiple abiotic drivers when projecting future population growth and geographical distributions.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Ecology
- 4102 Ecological applications
- 3103 Ecology
- 0602 Ecology
- 0501 Ecological Applications
- 0406 Physical Geography and Environmental Geoscience
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Ecology
- 4102 Ecological applications
- 3103 Ecology
- 0602 Ecology
- 0501 Ecological Applications
- 0406 Physical Geography and Environmental Geoscience