Skip to main content

Community preserving network embedding

Publication ,  Conference
Wang, X; Cui, P; Wang, J; Pei, J; Zhu, W; Yang, S
Published in: 31st AAAI Conference on Artificial Intelligence, AAAI 2017
January 1, 2017

Network embedding, aiming to learn the low-dimensional representations of nodes in networks, is of paramount importance in many real applications. One basic requirement of network embedding is to preserve the structure and inherent properties of the networks. While previous network embedding methods primarily preserve the microscopic structure, such as the first- and second-order proximities of nodes, the mesoscopic community structure, which is one of the most prominent feature of networks, is largely ignored. In this paper, we propose a novel Modularized Nonnegative Matrix Factorization (M-NMF) model to incorporate the community structure into network embedding. We exploit the consensus relationship between the representations of nodes and community structure, and then jointly optimize NMF based representation learning model and modularity based community detection model in a unified framework, which enables the learned representations of nodes to preserve both of the microscopic and community structures. We also provide efficient updating rules to infer the parameters of our model, together with the correctness and convergence guarantees. Extensive experimental results on a variety of real-world networks show the superior performance of the proposed method over the state-of-the-arts.

Duke Scholars

Published In

31st AAAI Conference on Artificial Intelligence, AAAI 2017

Publication Date

January 1, 2017

Start / End Page

203 / 209
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., & Yang, S. (2017). Community preserving network embedding. In 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 203–209).
Wang, X., P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang. “Community preserving network embedding.” In 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 203–9, 2017.
Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S. Community preserving network embedding. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017. 2017. p. 203–9.
Wang, X., et al. “Community preserving network embedding.” 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 2017, pp. 203–09.
Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S. Community preserving network embedding. 31st AAAI Conference on Artificial Intelligence, AAAI 2017. 2017. p. 203–209.

Published In

31st AAAI Conference on Artificial Intelligence, AAAI 2017

Publication Date

January 1, 2017

Start / End Page

203 / 209