Efficient discovery of contrast subspaces for object explanation and characterization
We tackle the novel problem of mining contrast subspaces. Given a set of multidimensional objects in two classes (Formula presented.) and (Formula presented.) and a query object (Formula presented.) , we want to find the top- (Formula presented.) subspaces that maximize the ratio of likelihood of (Formula presented.) in (Formula presented.) against that in (Formula presented.). Such subspaces are very useful for characterizing an object and explaining how it differs between two classes. We demonstrate that this problem has important applications, and, at the same time, is very challenging, being MAX SNP-hard. We present CSMiner, a mining method that uses kernel density estimation in conjunction with various pruning techniques. We experimentally investigate the performance of CSMiner on a range of data sets, evaluating its efficiency, effectiveness, and stability and demonstrating it is substantially faster than a baseline method.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 0806 Information Systems
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 0806 Information Systems
- 0801 Artificial Intelligence and Image Processing