Finding pareto optimal groups: Group-based skyline
Skyline computation, aiming at identifying a set of skyline points that are not dominated by any other point, is particularly useful for multi-criteria data analysis and decision making. Traditional skyline computation, however, is inadequate to answer queries that need to analyze not only individual points but also groups of points. To address this gap, we generalize the original skyline definition to the novel group-based skyline (G-Skyline), which represents Pareto optimal groups that are not dominated by other groups. In order to compute G-Skyline groups consisting of k points efficiently, we present a novel structure that represents the points in a directed skyline graph and captures the dominance relationships among the points based on the first k skyline layers. We propose efficient algorithms to compute the first k skyline layers. We then present two heuristic algorithms to efficiently compute the G-Skyline groups: the point-wise algorithm and the unit group-wise algorithm, using various pruning strategies. The experimental results on the real NBA dataset and the synthetic datasets show that G-Skyline is interesting and useful, and our algorithms are efficient and scalable. © 2015 VLDB Endowment 2150-8097/15/09.
Duke Scholars
DOI
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics
Citation
DOI
Publication Date
Volume
Start / End Page
Related Subject Headings
- 4605 Data management and data science
- 0807 Library and Information Studies
- 0806 Information Systems
- 0802 Computation Theory and Mathematics