Mining outlying aspects on numeric data
When we are investigating an object in a data set, which itself may or may not be an outlier, can we identify unusual (i.e., outlying) aspects of the object? In this paper, we identify the novel problem of mining outlying aspects on numeric data. Given a query object o in a multidimensional numeric data set O, in which subspace is o most outlying? Technically, we use the rank of the probability density of an object in a subspace to measure the outlyingness of the object in the subspace. A minimal subspace where the query object is ranked the best is an outlying aspect. Computing the outlying aspects of a query object is far from trivial. A naïve method has to calculate the probability densities of all objects and rank them in every subspace, which is very costly when the dimensionality is high. We systematically develop a heuristic method that is capable of searching data sets with tens of dimensions efficiently. Our empirical study using both real data and synthetic data demonstrates that our method is effective and efficient.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
- 0806 Information Systems
- 0804 Data Format
- 0801 Artificial Intelligence and Image Processing
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
- 0806 Information Systems
- 0804 Data Format
- 0801 Artificial Intelligence and Image Processing