Malicious URL detection by dynamically mining patterns without pre-defined elements
Detecting malicious URLs is an essential task in network security intelligence. In this paper, we make two new contributions beyond the state-of-the-art methods on malicious URL detection. First, instead of using any pre-defined features or fixed delimiters for feature selection, we propose to dynamically extract lexical patterns from URLs. Our novel model of URL patterns provides new flexibility and capability on capturing malicious URLs algorithmically generated by malicious programs. Second, we develop a new method to mine our novel URL patterns, which are not assembled using any pre-defined items and thus cannot be mined using any existing frequent pattern mining methods. Our extensive empirical study using the real data sets from Fortinet, a leader in the network security industry, clearly shows the effectiveness and efficiency of our approach.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 0806 Information Systems
- 0805 Distributed Computing
- 0804 Data Format
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 0806 Information Systems
- 0805 Distributed Computing
- 0804 Data Format